高原科学与可持续发展研究院
威廉体育
青海省数学学会
学 术 报 告
报告题目:Linked partition ideals and Schur's 1926 partition theorem
报告人:陈小航 Dalhousie University
时间:2022年4月30日(星期六)上午9:00-12: 00
腾讯会议ID:615342945
报告摘要:Issai Schur's famous 1926 partition theorem states that the number of partitions of $n$ into distinct parts congruent to $\pm 1$ modulo $3$ is the same as the number of partitions of $n$ such that every two consecutive parts have difference at least $3$ and that no two consecutive multiples of $3$ occur as parts. In this talk, we consider some variants of Schur's theorem, especially their Andrews--Gordon type generating functions, from the perspective of span one linked partition ideals introduced by George Andrews. Our investigation has interesting connections with basic hypergeometric series, $q$-difference equations, computer algebra, and so on.
简历:陈小航,现于加拿大Dalhousie University任Killam Postdoctoral Fellow,合作导师为Karl Dilcher教授。博士毕业于美国Pennsylvania State University,师从美国两院院士、前美国数学会主席George E. Andrews教授。研究专长:数论、组合数学、特殊函数;近期工作主要集中在整数分拆领域。已在《Journal of Combinatorial Theory, Series A》、《Journal of Number Theory》、《Discrete Mathematics》、《Ramanujan Journal》、《Acta Arithmetica》等组合与数论方向的高水平期刊发表学术论文多篇,并在Combinatory Analysis 2018、Analytic and Combinatorial Number Theory: The Legacy of Ramanujan等国际会议以及美国数学学会Joint Mathematics Meetings和Sectional Meetings上作报告。