题目:The Turán number of Berge-matching in hypergraphs
报告人:单而芳(上海大学)
时间:2022年8月16日(星期二)14:00
腾讯会议:361-141-596
摘要:Given a graph F, a hypergraph is a Berge-F if it can be obtained by expanding each edge in F to a hyperedge containing it. The Turán number of the Berge-F, denoted by exr(n, Berge-F), is the maximum number of edges in an n-vertex r-uniform hypergraph with no subhypergraph isomorphic to any Berge-F. In this paper we study the Turán number for Berge-F when F is a matching of size k+1. We determine the value of exr(n, Berge-F) for the cases when r≤ k-1 and r≥2k+2 and we characterize the extremal hypergraphs. For the case when k≤r≤2k+1, we establish an upper bound on exr(n, Berge-F).
个人简介:单而芳,上海大学教授、博士生导师,上海市浦江人才. 担任中国运筹学会图论与组合分会常务理事、中国运筹学会博弈论分会常务理事和中国工业与应用数学图论与组合专业委员会理事。其研究方向是图和超图的结构参数,图上合作博弈及其在经济中应用。在SIAM Discrete Math.、European J. Combin.、J.Graph Theory等刊物发表学术论文150余篇。近年来,同时开展图上合作博弈的研究,在Int J Game Theory、Annals of Operation Research和《中国管理科学》等管理类期刊发表50多篇论文。科研成果曾获上海市自然科学奖.